Heterologous expression and characterization of a 3-ketosteroid-∆1-dehydrogenase from Gordonia neofelifaecis and its utilization in the bioconversion of androst-4,9(11)-dien-3,17-dione

نویسندگان

  • Weiyi Wang
  • Fanglan Ge
  • Caihong Ma
  • Jiang Li
  • Yao Ren
  • Wei Li
  • Jinsong Fu
چکیده

3-Ketosteroid-∆1-dehydrogenase (KstD), a key enzyme in microbial steroid catabolism, catalyzes the trans-axial elimination of the C1 and C2 hydrogen atoms of the A-ring from the polycyclic ring structure of 3-ketosteroids, and it was usually used to transform androst-4-ene-3,17-dione (AD) to produce androsta-1,4-diene-3,17-dione. Here, the KstD from Gordonia neofelifaecis was expressed efficiently in Escherichia coli. E. coli cells expressing KstD3gor were subjected to the investigation of dehydrogenation activity for different steroids. The results showed that KstD3gor has a clear preference for steroid substrates with 3-keto-4-ene configuration, and it exhibits higher activity towards steroid substrates carrying a small or no aliphatic side chain than towards substrates having a bulky side chain at the C-17 atom. The recombinant strain could efficiently convert androst-4,9(11)-dien-3,17-dione into androst-1,4,9(11)-trien-3,17-dione (with conversion rate of 96%). 1(2)-Dehydrogenation of androst-4,9(11)-dien-3,17-dione is one of the key steps in glucocorticoid production. To the best of our knowledge, this is the first study reporting on the conversion of androst-4,9(11)-dien-3,17-dione catalyzed by recombinant KstD; the expression system of KstD3gor reported here would have an impact in the industrial production of glucocorticoid in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Over-expression of Mycobacterium neoaurum 3-ketosteroid-Δ1-dehydrogenase in Corynebacterium crenatum for efficient bioconversion of 4-androstene-3,17-dione to androst-1,4-diene-3,17-dione

Article history: Received 21 July 2016 Accepted 11 October 2016 Available online 26 October 2016 Background: 3-Ketosteroid-Δ-dehydrogenase (KSDD), a flavoprotein enzyme, catalyzes the bioconversion of 4-androstene-3,17-dione (AD) to androst-1,4-diene-3,17-dione (ADD). To date, there has been no report about characterization of KSDD from Mycobacterium neoaurum strains, which were usually employe...

متن کامل

Targeted disruption of the kstD gene encoding a 3-ketosteroid delta(1)-dehydrogenase isoenzyme of Rhodococcus erythropolis strain SQ1.

Microbial phytosterol degradation is accompanied by the formation of steroid pathway intermediates, which are potential precursors in the synthesis of bioactive steroids. Degradation of these steroid intermediates is initiated by Delta(1)-dehydrogenation of the steroid ring structure. Characterization of a 2.9-kb DNA fragment of Rhodococcus erythropolis SQ1 revealed an open reading frame (kstD)...

متن کامل

Efficient 9α-hydroxy-4-androstene-3,17-dione production by engineered Bacillus subtilis co-expressing Mycobacterium neoaurum 3-ketosteroid 9α-hydroxylase and B. subtilis glucose 1-dehydrogenase with NADH regeneration

3-Ketosteroid 9α-hydroxylase (KSH, consisting of KshA and KshB), a key enzyme in steroid metabolism, can catalyze the transformation of 4-androstene-3,17-dione (AD) to 9α-hydroxy-4-androstene-3,17-dione (9OHAD) with NADH as coenzyme. In this work, KSH from Mycobacterium neoaurum JC-12 was successfully cloned and overexpressed in Bacillus subtilis 168. The expression and purification of KSH was ...

متن کامل

Deletion of the gene encoding the reductase component of 3-ketosteroid 9α-hydroxylase in Rhodococcus equi USA-18 disrupts sterol catabolism, leading to the accumulation of 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid and 1,4-androstadiene-3,17-dione

The gene encoding the putative reductase component (KshB) of 3-ketosteroid 9α-hydroxylase was cloned from Rhodococcus equi USA-18, a cholesterol oxidase-producing strain formerly named Arthrobacter simplex USA-18, by PCR according to consensus amino acid motifs of several bacterial KshB subunits. Deletion of the gene in R. equi USA-18 by a PCR-targeted gene disruption method resulted in a mutan...

متن کامل

Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid Delta(1)-dehydrogenase isoenzyme.

Previously, Rhodococcus erythropolis SQ1 kstD, encoding ketosteroid Delta(1)-dehydrogenase (KSTD1) was characterized. Surprisingly, a kstD gene deletion mutant (strain RG1) grew normally on steroids. UV mutagenesis of strain RG1 allowed isolation of strains (e.g. strain RG1-UV29) unable to perform the Delta(1)-dehydrogenation of 4-androstene-3,17-dione (AD) and 9alpha-hydroxy-4-androstene-3,17-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017